Changes in capture availability due to infection can lead to detectable biases in population-level infectious disease parameters

Author:

Holmes Iris A.12ORCID,Durso Andrew M.3ORCID,Myers Christopher R.4,Hendry Tory A.1

Affiliation:

1. Department of Microbiology, Cornell University, Ithaca, NY, United States

2. Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States

3. Department of Biological Sciences, Florida Gulf Coast University, Ft. Myers, FL, USA

4. Center for Advanced Computing & Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States

Abstract

Correctly identifying the strength of selection that parasites impose on hosts is key to predicting epidemiological and evolutionary outcomes of host-parasite interactions. However, behavioral changes due to infection can alter the capture probability of infected hosts and thereby make selection difficult to estimate by standard sampling techniques. Mark-recapture approaches, which allow researchers to determine if some groups in a population are less likely to be captured than others, can be used to identify infection-driven capture biases. If a metric of interest directly compares infected and uninfected populations, calculated detection probabilities for both groups may be useful in identifying bias. Here, we use an individual-based simulation to test whether changes in capture rate due to infection can alter estimates of three key metrics: 1) reduction in the reproductive success of infected parents relative to uninfected parents, 2) the relative risk of infection for susceptible genotypes compared to resistant genotypes, and 3) changes in allele frequencies between generations. We explore the direction and underlying causes of the biases that emerge from these simulations. Finally, we argue that short series of mark-recapture sampling bouts, potentially implemented in under a week, can yield key data on detection bias due to infection while not adding a significantly higher burden to disease ecology studies.

Publisher

PeerJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3