Complex Adaptive Systems

Author:

Lansing J. Stephen12

Affiliation:

1. Department of Anthropology, University of Arizona, 221 Haury Bldg., Tucson, Arizona 85721-0030;

2. external faculty, Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501;

Abstract

▪ Abstract  The study of complex adaptive systems, a subset of nonlinear dynamical systems, has recently become a major focus of interdisciplinary research in the social and natural sciences. Nonlinear systems are ubiquitous; as mathematician Stanislaw Ulam observed, to speak of “nonlinear science” is like calling zoology the study of “nonelephant animals” (quoted in Campbell et al. 1985 , p. 374). The initial phase of research on nonlinear systems focused on deterministic chaos, but more recent studies have investigated the properties of self-organizing systems or anti-chaos. For mathematicians and physicists, the biggest surprise is that complexity lurks within extremely simple systems. For biologists, it is the idea that natural selection is not the sole source of order in the biological world. In the social sciences, it is suggested that emergence—the idea that complex global patterns with new properties can emerge from local interactions—could have a comparable impact.

Publisher

Annual Reviews

Subject

Arts and Humanities (miscellaneous),Anthropology,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3