Antifreeze and Ice Nucleator Proteins in Terrestrial Arthropods

Author:

Duman John G1

Affiliation:

1. Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556;

Abstract

▪ Abstract  Terrestrial arthropods survive subzero temperatures by becoming either freeze tolerant (survive body fluid freezing) or freeze avoiding (prevent body fluid freezing). Protein ice nucleators (PINs), which limit supercooling and induce freezing, and antifreeze proteins (AFPs), which function to prevent freezing, can have roles in both freeze tolerance and avoidance. Many freeze-tolerant insects produce hemolymph PINs, which induce freezing at high subzero temperatures thereby inhibiting lethal intracellular freezing. Some freeze-tolerant species have AFPs that function as cryoprotectants to prevent freeze damage. Although the mechanism of this cryoprotection is not known, it may involve recrystallization inhibition and perhaps stabilization of the cell membrane. Freeze-avoiding species must prevent inoculative freezing initiated by external ice across the cuticle and extend supercooling abilities. Some insects remove PINs in the winter to promote supercooling, whereas others have selected against surfaces with ice-nucleating abilities on an evolutionary time scale. However, many freeze-avoiding species do have proteins with ice-nucleating activity, and these proteins must be masked in winter. In the beetle Dendroides canadensis, AFPs in the hemolymph and gut inhibit ice nucleators. Also, hemolymph AFPs and those associated with the layer of epidermal cells under the cuticle inhibit inoculative freezing. Two different insect AFPs have been characterized. One type from the beetles D. canadensis and Tenebrio molitor consists of 12- and 13-mer repeating units with disulfide bridges occurring at least every six residues. The spruce budworm AFP lacks regular repeat units. Both have much higher activities than any known AFPs.

Publisher

Annual Reviews

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3