SCANNING THERMAL MICROSCOPY

Author:

Majumdar A.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740;

Abstract

▪ Abstract  This chapter presents a review of the technology of scanning thermal microscopy (SThM) and its applications in thermally probing micro- and nanostructured materials and devices. We begin by identifying the parameters that control the temporal and temperature resolution in thermometry. The discussion of SThM research is divided into three main categories: those that use (a) thermovoltage-based measurements, (b) electrical resistance techniques, and (c) thermal expansion measurements. Within each category we describe numerous techniques developed for (a) the method of probe fabrication, (b) the experimental setup used for SThM, (c) the applications of that technique, and (d) the measurement characteristics such as tip-sample heat transfer mechanism, spatiotemporal resolution, and interpretation of data for property measurements. Because most of the SThM techniques require fundamental knowledge of tip-sample heat transfer, all possible heat transfer mechanisms are discussed in depth, and relations for estimating the tip-sample conductance for each mechanism are provided. This is critical because tip-sample heat transfer controls spatial resolution, temperature accuracy and resolution, and imaging artifacts. Based on this discussion, a simple model is given for future design of SThM probes. The review concludes by describing some new developments on the applications of near-field optical microscopy for temperature measurements.

Publisher

Annual Reviews

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3