REGULATORS OF APOPTOSIS ON THE ROAD TO PERSISTENT ALPHAVIRUS INFECTION

Author:

Griffin Diane E.1,Hardwick J. Marie1

Affiliation:

1. Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205

Abstract

▪ Abstract  Alphavirus infection can trigger the host cell to activate its genetically programmed cell death pathway, leading to the morphological features of apoptosis. The ability to activate this death pathway is dependent on both viral and cellular determinants. The more virulent strains of alphavirus induce apoptosis with increased efficiency both in animal models and in some cultured cells. Although the immune system clearly plays a central role in clearing virus, the importance of other cellular factors in determining the outcome of virus infections are evident from the observation that mature neurons are better able to resist alphavirus-induced apoptosis than immature neurons are, both in culture and in mouse brains. These findings are consistent with the age-dependent susceptibility to disease seen in animals. Cellular genes that are known to regulate the cell death pathway can modulate the outcome of alphavirus infection in cultured cells and perhaps in animals. The cellular bax and bak genes, which are known to accelerate cell death, also accelerate virus-induced apoptosis. In contrast, inhibitors of apoptotic cell death such as bcl-2 suppress virus-induced apoptosis, which can facilitate a persistent virus infection. Thus, the balance of cellular factors that regulate cell death may be critical in virus infections. Additional viral factors also contribute to this balance. The more virulent strains of alphavirus have acquired the ability to induce apoptosis in mature neurons, while mature neurons are resistant to cell death upon infection with less virulent strains. Here we discuss a variety of cellular and viral factors that modulate the outcome of virus infection.

Publisher

Annual Reviews

Subject

Microbiology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3