Environmental Effects on Spatial and Temporal Patterns of Leaf and Root Growth

Author:

Walter Achim1,Silk Wendy K.2,Schurr Ulrich1

Affiliation:

1. Institute of Chemistry and Dynamics of the Geosphere ICG-3: Phytosphere Forschungszentrum Jülich GmbH, 52425 Jülich, Germany;,

2. Department of Land, Air, and Water Resources, University of California, Davis, California 95616;

Abstract

Leaves and roots live in dramatically different habitats, but are parts of the same organism. Automated image processing of time-lapse records of these organs has led to understanding of spatial and temporal patterns of growth on time scales from minutes to weeks. Growth zones in roots and leaves show distinct patterns during a diel cycle (24 h period). In dicot leaves under nonstressful conditions these patterns are characterized by endogenous rhythms, sometimes superimposed upon morphogenesis driven by environmental variation. In roots and monocot leaves the growth patterns depend more strongly on environmental fluctuations. Because the impact of spatial variations and temporal fluctuations of above- and belowground environmental parameters must be processed by the plant body as an entire system whose individual modules interact on different levels, growth reactions of individual modules are often highly nonlinear. A mechanistic understanding of plant resource use efficiency and performance in a dynamically fluctuating environment therefore requires an accurate analysis of leaf and root growth patterns in conjunction with knowledge of major intraplant communication systems and metabolic pathways.

Publisher

Annual Reviews

Subject

Cell Biology,Plant Science,Molecular Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3