Genotypic differences in systemic root responses to mechanical obstacles

Author:

Colombi Tino1ORCID,Eitelberg Leah1,Kolb Evelyne2,Legué Valérie3,Bogeat‐Triboulot Marie‐Béatrice4

Affiliation:

1. Department of Soil and Environment Swedish University of Agricultural Sciences (SLU) Uppsala Sweden

2. PMMH, CNRS, ESPCI Paris Université PSL, Sorbonne Université, Université Paris Cité Paris France

3. Université Clermont Auvergne, INRAE, PIAF Clermont‐Ferrand France

4. Université de Lorraine, AgroParisTech, INRAE, UMR Silva Nancy France

Abstract

AbstractAs roots grow through the soil to forage for water and nutrients, they encounter mechanical obstacles such as patches of dense soil and stones that locally impede root growth. Here, we investigated hitherto poorly understood systemic responses of roots to localised root impedance. Seedlings of two wheat genotypes were grown in hydroponics and exposed to impenetrable obstacles constraining the vertical growth of the primary or a single seminal root. We deployed high‐resolution in vivo imaging to quantify temporal dynamics of root elongation rate, helical root movement, and root growth direction. The two genotypes exhibited distinctly different patterns of systemic responses to localised root impedance, suggesting different strategies to cope with obstacles, namely stress avoidance and stress tolerance. Shallower growth of unconstrained seminal roots and more pronounced helical movement of unconstrained primary and seminal roots upon localised root impedance characterised the avoidance strategy shown by one genotype. Stress tolerance to localised root impedance, as exhibited by the other genotype, was indicated by relatively fast elongation of primary roots and steeper seminal root growth. These different strategies highlight that the effects of mechanical obstacles on spatiotemporal root growth patterns can differ within species, which may have major implications for resource acquisition and whole‐plant growth.

Funder

Lantmännens Forskningsstiftelse

Svenska Forskningsrådet Formas

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3