Affiliation:
1. National Renewable Energy Laboratory, Golden, Colorado 80401;, , , ,
2. Colorado School of Mines, Environmental Science and Engineering Division, Golden, Colorado 80401;
Abstract
The photobiological production of H2 gas, using water as the only electron donor, is a property of two types of photosynthetic microorganisms: green algae and cyanobacteria. In these organisms, photosynthetic water splitting is functionally linked to H2 production by the activity of hydrogenase enzymes. Interestingly, each of these organisms contains only one of two major types of hydrogenases, [FeFe] or [NiFe] enzymes, which are phylogenetically distinct but perform the same catalytic reaction, suggesting convergent evolution. This idea is supported by the observation that each of the two classes of hydrogenases has a different metallo-cluster, is encoded by entirely different sets of genes (apparently under the control of different promoter elements), and exhibits different maturation pathways. The genetics, biosynthesis, structure, function, and O2 sensitivity of these enzymes have been the focus of extensive research in recent years. Some of this effort is clearly driven by the potential for using these enzymes in future biological or biohybrid systems to produce renewable fuel or in fuel cell applications.
Subject
Cell Biology,Plant Science,Molecular Biology,Physiology
Cited by
319 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献