In Vivo Genetic Analysis of Bacterial Virulence

Author:

Chiang Su L.12,Mekalanos John J.12,Holden David W.12

Affiliation:

1. Department of Microbiology and Molecular Genetics and Shipley Institute of Medicine, Harvard Medical School, Boston, Massachusetts 02115;,

2. Department of Infectious Diseases, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom;

Abstract

▪ Abstract  In vitro assays contribute greatly to our understanding of bacterial pathogenesis, but they frequently cannot replicate the complex environment encountered by pathogens during infection. The information gained from such studies is therefore limited. In vivo models, on the other hand, can be difficult to use, and this has to some extent diminished the incentive to perform studies in living animals. However, several recently developed techniques permit in vivo examination of many genes simultaneously. Most of these methods fall into two broad classes: in vivo expression technology and signature-tagged mutagenesis. In vivo expression technology is a promoter-trap strategy designed to identify genes whose expression is induced in a specific environment, typically that encountered in a host. Signature-tagged mutagenesis uses comparative hybridization to isolate mutants unable to survive specified environmental conditions and has been used to identify genes critical for survival in the host. Both approaches have so far been used exclusively for investigating pathogen-host interactions, but they should be easily adaptable to the study of other processes.

Publisher

Annual Reviews

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3