K-Means Clustering Data COVID-19

Author:

Indraputra R. A.,Fitriana Rina

Abstract

Intisari— Pandemi COVID-19 merupakan suatu kejadian yang menimbulkan banyak sekali data yang sulit diolah. Data-data yang sangat penting seperti jumlah infeksi yang terkonfirmasi, jumlah kematian, dan jumlah orang yang pulih dapat diperoleh dari database seperti Kaggle, akan tetapi data tersebut perlu diolah lagi agar dapat menjadi berguna. Tujuan dari penelitian ini adalah untuk memperoleh dan mengolah data COVID-19 yang terdapat pada Kaggle mengunakan metode Data Mining yaitu K-Means Clustering Untuk K-Means Clustering pada penelitian ini, akan digunakan tiga metode untuk mengolah data yaitu pengolahan menggunakan software Microsoft Excel, dan software Data Mining yaitu Weka dan KNIME. Dari hasil pengolahan data, diperoleh dua cluster data, dimana cluster 2 memiliki jumlah terjangkit dan meninggal yang lebih tinggi dibandingkan dengan cluster 1, maka daerah-daerah cluster tersebut perlu diprioritaskan penanganannya.Abstract— The COVID-19 pandemic is an event that has generated lots of data that are difficult to process. Crucial data such as number of confirmed infections, number of deaths, and number of people recovered can be obtained from databases such as Kaggle, however these data needs to be processed further to become useful. The purpose of this research is to obtain and process COVID-19 data contained in Kaggle using Data Mining method namely K-Means Clustering Therefore, to process Big Data such as this, a Data Mining technique can be used which is Clustering. For K-Means Clustering in this research, there will be three methods used to process this data which is processing using the Microsoft Excel software, and using the Weka and KNIME Data Mining software. From the data processing results, two data clusters are obtained, in which cluster 2 have higher number of confirmed cases and deaths compared to cluster 1, thus the regions in that cluster needs priority in handling.

Publisher

Universitas Trisakti

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting the Spread of COVID-19 in Asia: A Clustering and Seasonal Analysis;Proceedings of the 2023 9th International Conference on Computer Technology Applications;2023-05-10

2. Implementasi Algoritma K-Means untuk Menentukan Angka Harapan Hidup berdasarkan Tingkat Provinsi;Blend Sains Jurnal Teknik;2023-03-17

3. Penerapan Algoritma K-means dalam Mengelompokkan Demam Berdarah Dengue Berdasarkan Kabupaten;Blend Sains Jurnal Teknik;2023-03-07

4. Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi;Hello World Jurnal Ilmu Komputer;2023-03-03

5. Analysis K-means of Covid-19 cases in Bandar Lampung and South Lampung;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGY AND MULTIDISCIPLINE (ICATAM) 2021: “Advanced Technology and Multidisciplinary Prospective Towards Bright Future” Faculty of Advanced Technology and Multidiscipline;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3