Abstract
We developed a method to perform direct ink writing (DIW) three-dimensional (3D) printing of coconut-basedvproducts with high oil content by varying compositions of the coconut oil and the coconut cream. The addition of oils is particularly crucial in providing energy, developing neurological functions, and improving the palatability of food. Despite the potential merits of high oil-content foods, there have been limited studies on 3D printing of high oil-content foods. In particular, the effect of oil content on the printability of food inks has not been studied to date. 3D printing of food inks with high oil contents is challenging due to oil separation that leads to unpredictable changes in rheological properties. In this work, we surveyed the behavior of the mixture of the coconut oil and the coconut cream and identified the appropriate conditions for the food inks that show the printability in DIW 3D printing. We initially formulated coconut cream inks added with coconutoil that did not exhibit oil separation, and characterized the rheological properties of such inks. We successfully 3D-printed coconut cream with additional coconut oil and successfully fabricated 3D structures with inks containing 25% water with an additional 10% (w/w) of coconut oil. Texture profile analysis (TPA) suggested that the hardness index and the chewiness index of mesh-shaped 3D-printed coconut cream decreased due to an increase in the water content of the ink. Overall, this studyoffered an understanding of the stability of the food inks and demonstrated the fabrication of 3D colloidal food with controlledoil content, which can be applied to formulating foods with tunable oil content to cater to individual nutritional needs without compromising the stability of the inks.
Publisher
Whioce Publishing Pte Ltd
Subject
Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献