Effect of Oil Content on the Printability of Coconut Cream

Author:

Lee Cheng PauORCID,Hoo Jon Yi,Hashimoto MichinaoORCID

Abstract

We developed a method to perform direct ink writing (DIW) three-dimensional (3D) printing of coconut-basedvproducts with high oil content by varying compositions of the coconut oil and the coconut cream. The addition of oils is particularly crucial in providing energy, developing neurological functions, and improving the palatability of food. Despite the potential merits of high oil-content foods, there have been limited studies on 3D printing of high oil-content foods. In particular, the effect of oil content on the printability of food inks has not been studied to date. 3D printing of food inks with high oil contents is challenging due to oil separation that leads to unpredictable changes in rheological properties. In this work, we surveyed the behavior of the mixture of the coconut oil and the coconut cream and identified the appropriate conditions for the food inks that show the printability in DIW 3D printing. We initially formulated coconut cream inks added with coconutoil that did not exhibit oil separation, and characterized the rheological properties of such inks. We successfully 3D-printed coconut cream with additional coconut oil and successfully fabricated 3D structures with inks containing 25% water with an additional 10% (w/w) of coconut oil. Texture profile analysis (TPA) suggested that the hardness index and the chewiness index of mesh-shaped 3D-printed coconut cream decreased due to an increase in the water content of the ink. Overall, this studyoffered an understanding of the stability of the food inks and demonstrated the fabrication of 3D colloidal food with controlledoil content, which can be applied to formulating foods with tunable oil content to cater to individual nutritional needs without compromising the stability of the inks.

Publisher

Whioce Publishing Pte Ltd

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3