Development and Biomechanical Evaluation of an Anatomical 3D Printing Modularized Proximal Inter-Phalangeal Joint Implant Based on the Computed Tomography Image Reconstructions

Author:

Hunag Yi-Chao,Chang Chun-Ming,Huang Shao-Fu,Hong Chia-Heng,Lin Chun-Li

Abstract

In this study, we developed a modularized proximal interphalangeal (PIP) joint implant that closely resembles the anatomical bone articular surface and cavity contour based on computed tomography (CT) image reconstruction. Clouds of points of 48 groups reconstructed phalanx articular surfaces of CT images, including the index, middle, ring, and little fingers, were obtained and fitted to obtain the articular surface using iterative closest points algorithm. Elliptical-cone stems, including the length, the major and minor axis at the stem metaphyseal/diaphyseal side for the proximal and middle phalanxes, were designed. The resurfacing PIP joint implant components included the bi-condylar surface for the proximal phalanx with elliptical-cone stem, ultra-high molecular weight polyethylene bi-concave articular surface for middle phalanx with hook mechanism, and the middle phalanx with elliptical-cone stem. Nine sets of modularized designs were made to meet the needs of clinical requirements and the weakness structure from the nine sets, that is, the worst structure case combination was defined and manufactured using titanium alloy three-dimensional (3D) printing. Biomechanical tests including anti-loosening pull-out strength for the proximal phalanx, elliptical-cone stem, and articular surface connection strength for the middle phalanx, and static/dynamic (25000 cycles) dislocation tests under three daily activity loads for the PIP joint implant were performed to evaluate the stability and anti-dislocation capability. Our experimental results showed that the pull-out force for the proximal phalanx implant was 727.8N. The connection force for the hook mechanism to cone stem of the middle phalanx was 49.9N and the hook mechanism was broken instead of stem pull out from the middle phalanx. The static dislocation forces/dynamic fatigue limits (pass 25000 cyclic load) of daily activities for piano-playing, pen-writing, and can-opening were 525.3N/262.5N, 316.0N/158N, and 115.0N/92N, respectively, and were higher than general corresponding acceptable forces of 19N, 17N, and 45N from the literatures. In conclusion, our developed modularized PIP joint implant with anatomical articular surface and elliptical-cone stem manufactured by titanium alloy 3D printing could provide enough joint stability and the ability to prevent dislocation.

Publisher

Whioce Publishing Pte Ltd

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3