Genetic diversity amongst oat (Avena sativa) lines for micronutrients and agro-morphological traits

Author:

RANJAN RAJEEV,CHAND SUBHASH,INDU ,SINGHAL RAJESH KUMAR,RANA MANEET,SAH R P,GAJGHATE RAHUL,AHMED SHAHID,DWIVEDI KRISHNA KUMAR

Abstract

The present experiment was conducted during winter (rabi) seasons of 2019–20 and 2020–21 at the ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh to study the genetic diversity amongst oat (Avena sativa L.) lines for micronutrients and agro-morphological traits. For study, 150 oat accessions collected from different sources were evaluated for two years and four micronutrients (Zn, Cu, Fe and Mn) and 9 agro-morphological traits were recorded. Genotypes IG02122 (464.0 mg/kg), IG02156 (48.1 mg/kg), IG03271 (136.0 mg/kg), and IG03213 (22.0 mg/kg) had maximum Fe, Zn, Mn and Cu content in fodder (harvested at 50% flowering). Genotype IG0280 had both high Zn (36.97 mg/kg) and Mn (114.33 mg/kg); IG03233 had high Cu (18.0 mg/kg) and Mn (124.0 mg/kg); and IG02131 had high Cu (18.33 mg/kg) and Fe (369.0 mg/kg) content. Analysis of variance (ANOVA) highlighted significant genotypic differences (P<0.001) for micronutrient content and fodder yield and related traits. High heritability coupled with high genetic advance was found for micronutrients, green fodder yield, test weight, dry matter yield, plant height, tiller number and grain number suggested the preponderance of additive and fixable genetic variance for these traits. The Cu content had significant negative association with Mn content but positive with leaf length and leaf width. Principal component analysis separated the total genetic variation into five main components and covered 59.09% of the total genetic variation. Based on Mahalanobis distances, genotypes were grouped into six clusters where maximum inter-cluster distance was observed for cluster 4 and 5. Therefore, genotypes from these two clusters can be used as parents for the future breeding programmes.

Publisher

Indian Council of Agricultural Research, Directorate of Knowledge Management in Agriculture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3