Robust Calibration Transfer in Noninvasive Ethanol Measurements, Part I: Mathematical Basis for Spectral Distortions in Fourier Transform Near-Infrared Spectroscopy (FT-NIR)

Author:

Ridder Trent D.1,Steeg Benjamin J. Ver1,Price Glenn L.1

Affiliation:

1. TruTouch Technologies, 1860 Chicago Avenue, Suite G-3, Riverside, CA 92507 USA

Abstract

Multivariate calibration transfer in spectroscopy is an active area of interest. Many current approaches rely on the measurement of a subset of calibration samples on each instrument produced, an approach that can be impractical in many applications. Furthermore, such methods attempt to model implicitly, rather than explicitly, interinstrument differences. In Part I of this work, a Fourier transform near-infrared spectroscopy (FT-NIR) system designed to perform noninvasive ethanol measurements is discussed. Optical distortions caused by self-apodization, shear, and off-axis detector field of view (FOV) are examined and equations describing their effects are given. The effects of shear and off-axis detector FOV are shown to yield nonlinear distortions of the amplitude and wavenumber axes of measured spectra that cannot be accommodated by typical wavenumber calibration procedures or background correction. The distortions forecast by these equations are verified using laboratory measurements, and an analysis of the spectral complexity caused by the distortions is presented. The theoretical and experimental aspects presented in Part I are incorporated into a new calibration transfer method whose benefits are illustrated in Part II using noninvasive alcohol measurements. Although this work discusses a specific FT-NIR instrument and application, the methods developed form a general framework for modeling the distortions of other types of optical spectrometers to improve instrument standardization and multivariate calibration transfer.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3