A Nonlinearized Multivariate Dominant Factor–Based Partial Least Squares (PLS) Model for Coal Analysis by Using Laser-Induced Breakdown Spectroscopy

Author:

Feng Jie1,Wang Zhe1,Li Lizhi1,Li Zheng1,Ni Weidou1

Affiliation:

1. State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua–BP Clean Energy Center, Tsinghua University, Beijing 100084 China

Abstract

A nonlinearized multivariate dominant factor–based partial least-squares (PLS) model was applied to coal elemental concentration measurement. For C concentration determination in bituminous coal, the intensities of multiple characteristic lines of the main elements in coal were applied to construct a comprehensive dominant factor that would provide main concentration results. A secondary PLS thereafter applied would further correct the model results by using the entire spectral information. In the dominant factor extraction, nonlinear transformation of line intensities (based on physical mechanisms) was embedded in the linear PLS to describe nonlinear self-absorption and inter-element interference more effectively and accurately. According to the empirical expression of self-absorption and Taylor expansion, nonlinear transformations of atomic and ionic line intensities of C were utilized to model self-absorption. Then, the line intensities of other elements, O and N, were taken into account for inter-element interference, considering the possible recombination of C with O and N particles. The specialty of coal analysis by using laser-induced breakdown spectroscopy (LIBS) was also discussed and considered in the multivariate dominant factor construction. The proposed model achieved a much better prediction performance than conventional PLS. Compared with our previous, already improved dominant factor–based PLS model, the present PLS model obtained the same calibration quality while decreasing the root mean square error of prediction (RMSEP) from 4.47 to 3.77%. Furthermore, with the leave-one-out cross-validation and L-curve methods, which avoid the overfitting issue in determining the number of principal components instead of minimum RMSEP criteria, the present PLS model also showed better performance for different splits of calibration and prediction samples, proving the robustness of the present PLS model.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3