Characterization of Crude Oil Products Using Data Fusion of Process Raman, Infrared, and Nuclear Magnetic Resonance (NMR) Spectra

Author:

Dearing Thomas I.1,Thompson Wesley J.1,Rechsteiner Carl E.1,Marquardt Brian J.1

Affiliation:

1. Applied Physics Laboratory, University of Washington, Seattle, Washington 98105 (T.I.D, W.J.T., B.J.M.); and Chevron Energy Technology Company, Richmond, California 94802 (C.E.R.)

Abstract

Process Raman, infrared (IR), and nuclear magnetic resonance (NMR) analyses are currently being performed in industrial settings for the monitoring of large scale reactions. These methods offer a distinct set of advantages such as no sample preparation and rapid noninvasive remote analysis. Process Raman spectroscopy offers information pertaining to the molecular backbone as well as symmetrical non-polar groups. IR spectroscopy yields information pertaining to hydrogen bonding and asymmetric polar groups. NMR spectrometry provides highly resolved information detailing specific proton environments. These distinct spectral characteristics present a unique opportunity to join together the Raman, IR, and NMR spectra to give one set of “fused” spectra containing complementary information from two sources (Raman and IR) and one orthogonal source (NMR) that describe an industrial process. Data fusion enables process modeling and control to be performed using a single data set. This study has applied the concept of data fusion to characterize a series of crude oil fractions. After collection, the respective spectra were scaled and fused together to form one contiguous spectrum. The multivariate models built using the fused data had a root mean square error of prediction (RMSEP) of 0.307%, a significant reduction in the prediction errors when compared to models built using the separate spectra. The use of data fusion with multiple analytical measurements reduces the error associated with inferential property models for industrial process monitoring, thus allowing for increased understanding and control of an industrial process.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3