Classification of Document Papers by Infrared Spectroscopy and Multivariate Statistical Techniques

Author:

Kher Ashwini1,Mulholland Mary1,Reedy Brian1,Maynard Philip1

Affiliation:

1. Department of Chemistry, Materials and Forensic Science, P.O. Box 123, University of Technology, Sydney, Broadway, NSW 2007, Sydney, Australia

Abstract

Infrared (IR) spectra of different varieties of document papers were collected with the use of attenuated total reflectance (ATR, 4000-650 cm−1, eight paper varieties) and diffuse reflectance (DRIFTS, 9000-2500 cm−1, six paper varieties) techniques. The spectral data were classified by the application of soft independent modeling of class analogies (SIMCA), using principal components analysis (PCA) to estimate the distance of separation between the different classes of paper samples and discriminant analysis (DA) to obtain a probabilistic classification. The use of DA on spectral data needed a preliminary data reduction step, either by PCA-decomposition of spectra or the selection of discrete spectral features having maximum discriminating ability. The aim of this research was to evaluate these data-reduction techniques and compare the discriminating power of these two spectral techniques (DRIFTS and ATR) by the application of PCA and DA. The use of PCA scores as DA variables provided the best resolution (100% correct classification) for the DRIFTS spectra, while PCA on the ATR spectra resulted in the best discrimination, separating 67.86% paper pairs completely with the use of cross-validation. The results of this study reemphasize that infrared spectroscopy coupled with multivariate statistical methods of analysis could provide a powerful discriminating tool for the forensic questioned document examiner.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3