Affiliation:
1. Department of Analytical and Marine Chemistry, Göteborg University, S-412 96 Göteborg, Sweden (O.S.); and Department of Analytical Chemistry, Astra Hässle AB, S-431 83 Mölndal, Sweden (M.J., F.W.L.)
Abstract
A method for classification of eleven chemically modified celluloses has been developed with the use of near-infrared (NIR) spectroscopy and soft independent modeling of class analogies (SIMCA). The sample set consisted of 440 different batches from eleven different cellulose derivatives. A full factorial design in temperature and moisture was made for one sample from each class in order to introduce climate variations in the calibration sample set. Principal components analysis (PCA) models were made for each class, and samples not present in the calibration set were classified according to the SIMCA method. Only one type II error (acceptance of an unacceptable sample) was detected in the classification of the different celluloses. The number of type I errors (rejection of an acceptable sample) ranged from 0 to 14%. Subgroups, due to different manufacturers, viscosities, particle sizes, and degrees of substitution, were detected and correctly classified. The sample presentation, focus of the instrument, number of reference measurements, depth of penetration, and selection of training set samples are discussed.
Subject
Spectroscopy,Instrumentation
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献