Cavity Enhanced Spectroscopy of High-Temperature H2O in the Near-Infrared Using a Supercontinuum Light Source

Author:

Watt Rosalynne S.1,Laurila Toni1,Kaminski Clemens F.1,Hult Johan1

Affiliation:

1. Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, CB2 3RA Cambridge, UK (R.S.W., T.L., C.F.K., J.H.); and SAOT School of Advanced Optical Technologies, Max Planck Institute for the Science of Light, Guenther-Scharowsky-Strasse 1, D-91058 Erlangen, Germany (C.F.K.)

Abstract

In this paper we demonstrate how broadband cavity enhanced absorption spectroscopy (CEAS) with supercontinuum (SC) radiation in the near-infrared spectral range can be used as a sensitive, multiplexed, and simple tool to probe gas-phase species in high-temperature environments. Near-infrared SC radiation is generated by pumping a standard single-mode fiber with a picosecond fiber laser. Standard low reflectivity mirrors are used for the cavity and an optical spectrum analyzer is used for the detection of gas-phase species in combustion. The method is demonstrated by measuring flame generated H2O in the 1500 to 1550 nm region and room-temperature CO2 between 1520 nm and 1660 nm. The broadband nature of the technique permits hundreds of rotational features to be recorded, giving good potential to unravel complex, convoluted spectra. We discuss practical issues concerning the implementation of the technique and present a straightforward method for calibration of the CEAS system via a cavity ringdown measurement. Despite the large spectral variation of SC radiation from pulse to pulse, it is shown that SC sources can offer good stability for CEAS where a large number of SC pulses are typically averaged.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3