Osteoradionecrosis (ORN) of the Mandible: A Laser Raman Spectroscopic Study

Author:

Lakshmi R. Jyothi1,Alexander Mohan1,Kurien Jacob1,Mahato K. K.1,Kartha V. B.1

Affiliation:

1. Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576 119 (R.J.L.); Department of Oral Surgery, M.G. Government Dental College, Pondicherry, India (M.A); Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576 119 (J.K.); and Center for Laser Spectroscopy, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576 119 (K.K.M., V.B.K.)

Abstract

Laser Raman spectroscopy has been used in this study to characterize mandibular bone samples from patients who had undergone radiation therapy for oral cancer. The paper discusses spectral changes resulting in osteoradionecrosis (ORN) of the mandibular bone, a serious complication that may occur after radiation therapy. Histopathological studies normally reveal the radiation damage on vascular canals and loss in bone cells, but will not reveal any structural or biochemical changes. All radiation-induced side effects are attributed to this hypovascularity and hypocellularity caused by early- and/or late-delayed effects. Our Raman studies on normal and ORN bone and on bone exposed to radiation, but not in the ORN state, show that irradiation produces immediate structural changes in the inorganic bone matrix with a slight loss in cells. ORN bone, in addition to the structural changes that had already occurred on radiation exposure, shows almost complete loss of cellular components. Since bone tissue is continuously being remodeled (dissolved and rebuilt) under normal conditions, our results suggest that the immediate structural changes in the calcium hydroxy apatite mineral part is not repaired in ORN, due to loss of the highly transient osteoblasts and osteoclasts resulting from destruction of stem cells. The spectral studies also show changes in the organic matrix, which is mostly type I collagen.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3