Self-Modeling Mixture Analysis by Interactive Principal Component Analysis

Author:

Bu Dongsheng1,Brown Chris W.1

Affiliation:

1. Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

Abstract

A key procedure for mixture analysis in self-modeling methods is to identify a pure wavelength (or pure variable) for each component in the mixture. A pure wavelength has intensity contributions from only one of the components in a mixture. In this paper, an interactive approach based on principal component analysis (IPCA) is presented for the pure wavelength selection. The approach is developed from a combination of key set factor analysis (KSFA) and SIMPLISMA (simple-to-use interactive self-modeling mixture analysis). Since all significant principal components are included and user interaction is available during the procedure of selecting pure wavelengths, this new approach effectively resolves complicated mixture data containing highly overlapping and nonlinear absorptivities. Moreover, the noise level of the original spectra is determined from secondary principal components and used in the scaling so that pure wavelength selection reflects the signal-to-noise ratio in the data. Simulated three-component mixture spectra are used to demonstrate the IPCA method; this is followed by a general approach for analyzing an esterification reaction using mid-infrared data. The KSFA, SIMPLISMA and IPCA methods are compared by analyzing a set of near-infrared spectra of methane, ethane, and propane mixtures. Results from the three pure wavelength methods are used as inputs to the method of alternating least-squares to produce predicted spectra very similar to the spectra of the pure components.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3