Improved Methods for Performing Multivariate Analysis and Deriving Background Spectra in Atmospheric Open-Path FT-IR Monitoring

Author:

Hong Daewoong1,Cho Seogyeon1

Affiliation:

1. Department of Environmental Engineering, Inha University, Yonghyundong, Namgu, Incheon, 402-751, Korea

Abstract

Open-path Fourier transform infrared spectrometry (OP/FT-IR) may improve the temporal and spatial resolution in air pollutant measurements compared to conventional sampling methods. However, a successful OP/FT-IR operation requires an experienced analyst to resolve chemical interference as well as to derive a suitable background spectrum. The present study aims at developing a systematic method of handling the OP/FT-IR derived spectra for the measurement of photochemical oxidants and volatile organic compounds (VOCs) in urban areas. A classical least-squares (CLS) method, the most frequently used regression method in OP/FT-IR, is modified to constrain all the analyzed chemical species concentrations within a physically reasonable range. This new CLS method, named constrained CLS, may save the effort of predetermining the chemical species to be analyzed. A new background spectrum generation method is also introduced to more efficiently handle chemical interferences. Finally, CLS is shown to be prone to propagating errors in the case that a few data points contain a significant amount of error. The L1-norm minimization method reduces this error propagation to considerably increase the stability compared to CLS. The presently developed analysis software based on these approaches is compared with the other conventional CLS method using an artificially made single-beam spectrum as well as a field single-beam spectrum.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3