Sources of error in open-path FTIR measurements of N<sub>2</sub>O and CO<sub>2</sub> emitted from agricultural fields

Author:

Lin Cheng-HsienORCID,Grant Richard H.,Heber Albert J.,Johnston Cliff T.

Abstract

Abstract. Open-path Fourier transform infrared spectroscopy (OP-FTIR) is susceptible to environmental variables which can become sources of errors for gas quantification. In this study, we assessed the effects of water vapour, temperature, path length, and wind speed on quantitative uncertainties of nitrous oxide (N2O) and carbon dioxide (CO2) derived from OP-FTIR spectra. The presence of water vapour in spectra underestimated N2O mole fractions by 3 % and 12 %, respectively, from both lab and field experiments using a classical least squares (CLS) model when the reference and sample spectra were collected at the same temperature (i.e. 30 ∘C). Differences in temperature between sample and reference spectra also underestimated N2O mole fractions due to temperature broadening and the increased interferences of water vapour in spectra of wet samples. Changes in path length resulted in a non-linear response of spectra and bias (e.g. N2O and CO2 mole fractions were underestimated by 30 % and 7.5 %, respectively, at the optical path of 100 m using CLS models). For N2O quantification, partial least squares (PLS) models were less sensitive to water vapour, temperature, and path length and provided more accurate estimations than CLS. Uncertainties in the path-averaged mole fractions increased in low-wind conditions (<2 m s−1). This study identified the most common interferences that affect OP-FTIR measurements of N2O and CO2, which can serve as a quality assurance/control guide for current or future OP-FTIR users.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3