Classification of Fourier Transform Infrared Microscopic Imaging Data of Human Breast Cells by Cluster Analysis and Artificial Neural Networks

Author:

Zhang Lin1,Small Gary W.1,Haka Abigail S.1,Kidder Linda H.1,Lewis E. Neil1

Affiliation:

1. Ohio University, Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Clippinger Laboratories, Athens, Ohio 45701 (L.Z., G.W.S.); Massachusetts Institute of Technology, George R. Harrison Spectroscopy Laboratory, Rm. 6-014, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (A.S.H.); and Spectral Dimensions, Inc., 3416 Olandwood Court, Suite 210, Olney, Maryland 20832 (L.H.K., E.N.L.)

Abstract

Cluster analysis and artificial neural networks (ANNs) are applied to the automated assessment of disease state in Fourier transform infrared microscopic imaging measurements of normal and carcinomatous immortalized human breast cell lines. K-means clustering is used to implement an automated algorithm for the assignment of pixels in the image to cell and non-cell categories. Cell pixels are subsequently classified into carcinoma and normal categories through the use of a feed-forward ANN computed with the Broyden–Fletcher–Goldfarb–Shanno training algorithm. Inputs to the ANN consist of principal component scores computed from Fourier filtered absorbance data. A grid search optimization procedure is used to identify the optimal network architecture and filter frequency response. Data from three images corresponding to normal cells, carcinoma cells, and a mixture of normal and carcinoma cells are used to build and test the classification methodology. A successful classifier is developed through this work, although differences in the spectral backgrounds between the three images are observed to complicate the classification problem. The robustness of the final classifier is improved through the use of a rejection threshold procedure to prevent classification of outlying pixels.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3