Stress Classification Using Photoplethysmogram-Based Spatial and Frequency Domain Images

Author:

Elzeiny Sami,Qaraqe Marwa

Abstract

Stress is subjective and is manifested differently from one person to another. Thus, the performance of generic classification models that classify stress status is crude. Building a person-specific model leads to a reliable classification, but it requires the collection of new data to train a new model for every individual and needs periodic upgrades because stress is dynamic. In this paper, a new binary classification (called stressed and non-stressed) approach is proposed for a subject’s stress state in which the inter-beat intervals extracted from a photoplethysomogram (PPG) were transferred to spatial images and then to frequency domain images according to the number of consecutive. Then, the convolution neural network (CNN) was used to train and validate the classification accuracy of the person’s stress state. Three types of classification models were built: person-specific models, generic classification models, and calibrated-generic classification models. The average classification accuracies achieved by person-specific models using spatial images and frequency domain images were 99.9%, 100%, and 99.8%, and 99.68%, 98.97%, and 96.4% for the training, validation, and test, respectively. By combining 20% of the samples collected from test subjects into the training data, the calibrated generic models’ accuracy was improved and outperformed the generic performance across both the spatial and frequency domain images. The average classification accuracy of 99.6%, 99.9%, and 88.1%, and 99.2%, 97.4%, and 87.6% were obtained for the training set, validation set, and test set, respectively, using the calibrated generic classification-based method for the series of inter-beat interval (IBI) spatial and frequency domain images. The main contribution of this study is the use of the frequency domain images that are generated from the spatial domain images of the IBI extracted from the PPG signal to classify the stress state of the individual by building person-specific models and calibrated generic models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study

2. Fact Sheet: Health Disparities and Stress https://www.apa.org/topics/health-disparities/fact-sheet-stress

3. Acute Vs. Chronic Stress https://humanstress.ca/stress/understand-your-stress/acute-vs-chronic-stress/

4. Heart rate variability metrics for fine-grained stress level assessment

5. Mental health in the workplace https://www.who.int/mental_health/in_the_workplace/en/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3