Stress Perturbation Method for the Assessment of Cathodoluminescence Probe Response Functions

Author:

Zhu Wenliang1,Munisso Maria Chiara1,Matsutani Atsuo1,Ge Wanyin1,Pezzotti Giuseppe1

Affiliation:

1. Ceramic Physics Laboratory & Research Institute for Nanoscience, RIN, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan

Abstract

A method to determine the in-plane cathodoluminescence (CL) probe response function (PRF) (i.e., the function characterizing the in-plane luminescence intensity distribution within the electron probe volume) is proposed, which is based on “perturbing” the spectral position of a selected luminescence band using a highly graded stress field. The method is applied to the stress field developed ahead of the tip of an equilibrium crack in three different cases of CL bands, which arise from different structural phenomena: (i) the F+ (oxygen excess) defect band in a nominally stoichiometric sapphire (α-Al2O3) single crystal; (ii) the chromophoric R-line in ruby lattice (α-Al2–xCrxO3); and (iii) the near band-gap line in n-type GaN semiconductor crystal. A computer-aided data restoration procedure was applied to rationalize data retrieved from crack-tip line scans performed at different acceleration voltages. For the excitonic band-gap in GaN and for F+ emission in sapphire the CL probe in the electron focal plane was found to be comparable, but not necessarily coincident, in size to the electron probe. On the other hand, the occurrence of self-absorption in the case of R-line photons in ruby resulted in a significantly broadened CL probe with respect to the average scattering length of electrons.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3