Development of a Hierarchical Classification System with Artificial Neural Networks and FT-IR Spectra for the Identification of Bacteria

Author:

Udelhoven Thomas1,Naumann Dieter1,Schmitt Jürgen1

Affiliation:

1. Department of Remote Sensing, University of Trier, 54286 Trier, Germany (T.U.); FG 311, Robert-Koch Institute, Nordufer 20, 13353 Berlin, Germany (D.N.); and Department of Hydrology, Spectroscopy Group, University of Trier, 54286 Trier, Germany (J.S.)

Abstract

The practical value of elaborated vibrational spectroscopic techniques in medical and microbiological biodiagnostics depends strongly on the reliability, the speed, the ease of use, and the evaluation procedures of the acquired data. In the present study, artificial neural networks (ANNs) were used to establish a hierarchical classification system for microbial Fourier transform infrared (FT-IR) spectra suitable for identification purposes in a routine microbiological laboratory. A radial basis function network (RBF) proved to be superior for a top-level classification of the FT-IR spectra at the genus level. Species within these genera were sequentially further classified by using multilayer perceptrons (MLPs), which achieved a larger differentiation depth than RBF networks. The MLPs were trained with several learning algorithms. Best performance was achieved with the cascade correlation (CC) approach to determine the network topology combined with resilient propagation (Rprop) as the training algorithm. The final hierarchically organized model was able to discriminate between four genera of microorganisms comprising 42 different strains of Pseudomonacae, 33 strains of Bacillus, 46 strains of Staphylococcus, and 6 species and 24 strains of yeast genera Candida. Altogether, 145 strains from international microbial strain collections are comprised in 971 spectra. The species Candida albicans could be further classified with respect to susceptibility against the antibiotic drug fluconazole, which is of therapeutic relevance. Key factors for the classification results of the bacterial FT-IR spectra were the data pretreatment, the number of wavelengths selected by a feature extraction algorithm, the type of network, and the learning function used for the ANN training.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3