Extended-Range Spectroscopic pH Measurement Using Optimized Mixtures of Dyes

Author:

Raghuraman B.1,Gustavson G.1,Van Hal R. E. G.1,Dressaire E.1,Zhdaneev O.1

Affiliation:

1. Schlumberger-Doll Research, Ridgefield, Connecticut 06877

Abstract

The spectroscopic technique for pH measurement is a well-established laboratory technique that can give high-accuracy pH values. Recent studies have shown the advantage of this technique over standard potentiometric methods for pH measurements in fresh water and seawater and also at high temperatures and pressures. However, a limitation of the spectroscopic technique is that a single pH dye is sensitive only over a narrow pH range. We have developed optimized dye mixtures that are both sensitive and accurate over a broad pH range. The measurement is robust and simple, requires a minimum of two wavelengths, and is independent of the volume of the dye mixture added. Optimization of the dye mixture formulation to maximize accuracy in a broad range of pH involves varying both the dye type and its mole fraction and also accounting for spectral noise. This technique has been successfully applied for in situ pH measurements of oilfield formation waters.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Systems for the Well Drilling Operations;Studies in Systems, Decision and Control;2021

2. Spectrophotometric measurement of the pH of soil extracts using a multiple indicator dye mixture;European Journal of Soil Science;2018-12-03

3. pH of CO 2 saturated water and CO 2 saturated brines: Experimental measurements and modelling;International Journal of Greenhouse Gas Control;2017-11

4. An Optical Dye Method for Continuous Determination of Acidity in Ice Cores;Environmental Science & Technology;2016-09-15

5. Autonomous reagent-based microfluidic pH sensor platform;Sensors and Actuators B: Chemical;2016-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3