Determination of Ultratrace-Level Fluorescent Tracer Concentrations in Environmental Samples Using a Combination of HPLC Separation and Laser-Excited Fluorescence Multiwavelength Emission Detection: Application to Testing of Geothermal Well Brines

Author:

Kleimeyer James A.1,Rose Peter E.1,Harris Joel M.1

Affiliation:

1. Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (J.A.K., J.M.H.); and Energy and Geoscience Institute, University of Utah, 423 Wakara Way, Suite 300, Salt Lake City, Utah 84108 (P.E.R.)

Abstract

Lowering the limits of detection for fluorescent tracers in environmental samples can reduce the cost and environmental impact of tracer testing and allow a wider variety of tracer dyes to be used. Detecting dyes in environmental water samples at the sub-part-pertrillion level raises significant challenges in the sensitivity and selectivity of measurement. In the present work, we address this issue by developing a high-sensitivity multiwavelength fluorescence detector for high-performance liquid chromatography (HPLC)-separated samples. The fluorescence flow-cell utilizes fiber-optic coupling of laser excitation and the collected emission, which is dispersed in a short spectrograph and detected with a cooled charge-coupled device (CCD). The HPLC separation step not only resolves the target tracer from fluorescent impurities in the sample but also transfers the dye molecules into a solution of reproducible composition which provides a constant Raman scattering background against which the tracer fluorescence spectrum may be detected. The combination of emission-wavelength and elution-time measurement provides a multidimensional data set that improves selectivity for detecting a tracer. For analysis of the data, partial least-squares modeling is tested, along with two methods that do not require prior knowledge of interfering species: rank annihilation and self-modeling curve resolution. The method is developed and tested on fluorescein standards, and a detection limit for fluorescein of 40 ppq (4.0 × 10−14 g/mL) is predicted. This capability was tested on geothermal well samples, in which ∼40 ppq fluorescein could be detected in the presence of 15-fold greater fluorescence from an unknown interferent.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3