Near-Infrared Spectroscopy for Monitoring Starch Hydrolysis

Author:

Chung Hoeil1,Arnold Mark A.1

Affiliation:

1. NIR Project Team, SK Corporation, 110 Nam-Gu, Kosa-Dong, Ulsan, Korea (H.C.); and Department of Chemistry, University of Iowa, Iowa City, Iowa 52242 (M.A.A.)

Abstract

Near-infrared (NIR) spectroscopy has been evaluated for monitoring the acid-catalyzed hydrolysis (thinning) of starch. In practice, the extent of starch hydrolysis is measured in fluidity units, which correspond to a physical property of the hydrolyzed starch material. NIR spectra of samples taken periodically during a series of starch-thinning reactions were used to predict fluidity. The standard error of prediction (SEP) was 1.06 mL with the use of partial least-squares (PLS) regression in conjunction with digital Fourier filtering. This SEP was significantly better than that reported before with a univariate calibration model based on the integrated area of the 4400 cm−1 (2272 nm) absorption band for carbohydrates. The improved SEP meets the industry demands for real-time monitoring. Although these calibration models were developed from samples prepared in the laboratory, no spectroscopic differences were apparent between spectra collected from these laboratory samples and spectra collected from samples taken directly from plant starch slurries during actual thinning reactions. This similarity in spectral features, and hence chemical matrix, supports the potential of NIR spectroscopy for on-line monitoring of industrial starch-thinning processes.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3