Structural Changes of Milk Components during Acid-Induced Coagulation Kinetics as Studied by Synchronous Fluorescence and Mid-Infrared Spectroscopy

Author:

Boubellouta Tahar1,Galtier Virginie1,Dufour Eric1

Affiliation:

1. U.R. “Typicité des Produits Alimentaires”, VetAgro Sup, Campus agronomique de Clermont-Ferrand, Clermont Université, BP 35, F-63370 Lempdes, France

Abstract

Dynamic oscillatory experiments and front-face synchronous fluorescence spectroscopy and mid-infrared (mid-IR) spectroscopy have been used to investigate structure evolution, at the macroscopic and molecular levels, during milk acidification kinetics. The studies were performed using skim milk, at two different temperatures (30°C and 40°C), to which was added glucono-δ-lactone (GDL) to generate different structural changes in casein micelles and gels. Synchronous fluorescence spectra were recorded in the 250–500 nm excitation wavelength range using an offset of 80 nm between the excitation and emission monochromators for each system during the 300 min acidification kinetics. The change in the fluorescence intensity at 281 nm reflects the pH-induced physicochemical changes of casein micelles and, in particular, structural changes in the micelles in the pH range 5.5–5.0. Regarding mid-infrared spectroscopy, the region located between 1700 and 1500 cm−1, corresponding to the amide I and II bands, and the 1500–900 cm−1 region, called the fingerprint region, were considered for the characterization of milk coagulation kinetics. Changes in the absorbance at 1063 cm−1 as a function of pH for kinetics recorded at 30°C and 40°C reflected pH-induced phosphate dissolution in the pH range 5.5–5.0. Compared to rheometry, which reveals microstructure changes only in the gel state, spectroscopic methods make it possible to monitor molecular structure changes in micelles throughout the acidification processes.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3