Quantitative Analysis of Thin Films by dc Arc Optical Emission Spectroscopy

Author:

Hogrefe Arnold W.1,Lowry Robert K.1

Affiliation:

1. Harris Semiconductor, Division of Harris Corporation, Melbourne, Florida 32901

Abstract

dc arc optical emission spectroscopy was investigated as a quantitative method for measuring compositions of thin films commonly used in fabricating semiconductor devices. Thin films studied were nickel-chromium, phosphorus-silicon dioxide, and silicon-aluminum. Film samples were obtained by direct deposition onto ordinary graphite electrodes mounted in vacuum deposition chambers. Standards for each film were prepared by evaporating series of synthetic solutions approximating film compositions onto electrode tips, or by preparing appropriately weighed mixed powder standards. Calibration curves were established by burning multiple sets of these standard electrodes in a 15-A dc arc and plotting the intensity ratios for selected atomic lines of the analyte elements. Correlation of emission results with atomic absorption, electron microprobe, and gravimetric analysis showed absolute agreement to within ±3% for nickel-chromium, ± 0.3% for phosphorus-silicon dioxide, and ±0.2% for silicon-aluminum. Maximum relative percent error was 5, 10, and 12.5%, respectively. This technique has proved to be a rapid convenient process control tool in the manufacture of microelectronic devices.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference18 articles.

1. The Emission-Spectrographic and Atomic-Absorption Analyses of Metallic Thin Films

2. Determination of elemental area concentration in ultrathin specimens by x-ray microanalysis and atomic absorption spectrophotometry

3. Pliskin W. A., and Zanin S. J., in Handbook of Thin Film Technology, Maissel L. I. and Glang R., Eds. (McGraw-Hill, New York, 1970), pp. 11–1 to 11–54.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3