Dependence of Raman and Resonance Raman Intensities on Sample Self-Absorption

Author:

Hong Zhenmin1,Asher Sanford A.1

Affiliation:

1. Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260 USA

Abstract

Resonance Raman cross sections are generally larger than normal or preresonance Raman cross sections. Thus, higher Raman intensities are expected for resonance excitation, especially for backscattering measurements. However, self absorption decreases the observed Raman intensities. In the work here we examine the effect of self absorption on the observed preresonance and resonance Raman intensities. For the simplest case where a single electronic transition dominates the Raman scattering, and where the resonance enhancement scales with the square of the molar absorptivity of the absorption band, theory predicts that for close to resonance excitation the observed Raman intensities monotonically increase as resonance is approached. In the case that an impurity absorbs, the observed Raman intensities may decrease as excitation moves close to resonance for particular conditions of impurity absorption band widths and frequency offsets. Impurity absorption also causes decreases in observed Raman intensities for the more slowly increasing preresonance excitation.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3