Machine Vision Detection of Bonemeal in Animal Feed Samples

Author:

Nansen Christian1,Herrman Timothy1,Swanson Rand1

Affiliation:

1. Texas AgriLife Research, 1102 E FM 1294 Lubbock, Texas 79403-6603 (C.N.); Plant and Soil Science Department, Texas Tech University, Campus Box 42122, Lubbock, Texas 79409 (C.N.); Office of the Texas State Chemist, Texas A&M, PO Box 3160, College Station, Texas 77841 (T.H.); and Resonon Inc., 619 N. Church Ave. Suite 3, Bozeman, Montana 59715 (R.S.)

Abstract

There is growing public concern about contaminants in food and feed products, and reflection-based machine vision systems can be used to develop automated quality control systems. An important risk factor in animal feed products is the presence of prohibited ruminant-derived bonemeal that may contain the BSE (Bovine Spongiform Encephalopathy) prion. Animal feed products are highly complex in composition and texture (i.e., vegetable products, mineral supplements, fish and chicken meal), and current contaminant detection systems rely heavily on laborintensive microscopy. In this study, we developed a training data set comprising 3.65 million hyperspectral profiles of which 1.15 million were from bonemeal samples, 2.31 million from twelve other feed materials, and 0.19 million denoting light green background (bottom of Petri dishes holding feed materials). Hyperspectral profiles in 150 spectral bands between 419 and 892 nm were analyzed. The classification approach was based on a sequence of linear discriminant analyses (LDA) to gradually improve the classification accuracy of hyperspectral profiles (reduce level of false positives), which had been classified as bonemeal in previous LDAs. That is, all hyperspectral profiles classified as bonemeal in an initial LDA (31% of these were false positives) were used as input data in a second LDA with new discriminant functions. Hyperspectral profiles classified as bonemeal in LDA2 (false positives were equivalent to 16%) were used as input data in a third LDA. This approach was repeated twelve times, in which at each step hyperspectral profiles were eliminated if they were classified as feed material (not bonemeal). Four independent feed materials were experimentally contaminated with 0–25% (by weight) bonemeal and used for validation. The analysis presented here provides support for development of an automated machine vision to detect bonemeal contamination around the 1% (by weight) level and therefore constitutes an important initial screening tool in comprehensive, rapid, and practically feasible quality control of feed materials.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3