Classification of Raw and RoastedSemen CassiaeSamples with the Use of Fourier Transform Infrared Fingerprints and Least Squares Support Vector Machines

Author:

Lai Yanhua1,Ni Yongnian1,Kokot Serge1

Affiliation:

1. State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China (Y.L., Y.N.); Department of Chemistry, Nanchang University, Nanchang, Jiangxi 330047, China (Y.N.); and Applied Chemistry Cluster, School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia (S.K.)

Abstract

Raw and roasted Semen Cassiae seeds, a complex traditional Chinese medicine (TCM), are used as examples to research and develop a method of classification analysis based on measurements of Fourier transform infrared (FT-IR) spectral fingerprints. Eighty samples of the TCM were measured in the mid-infrared range, 400–2000 cm−1(KBr pellets), and the complex overlapping spectra were submitted for interpretation to a principal component analysis least squares support vector machine (PC-LS-SVM), kernel principal component analysis least squares support vector machine (KPC-LS-SVM), and radial basis function artificial neural networks (RBF-ANN). The LS-SVM models were developed with an RBF kernel function and a grid search technique. Training models were constructed with the use of raw and first-derivative spectra and these were then verified by another data set containing both raw and roasted spectral objects. It was demonstrated that the first-derivative data set produced the best separation of the spectral objects. In general, satisfactory analytical performance was obtained with the PC-LS-SVM, KPC-LS-SVM, and RBF-ANN training models and with the classification of the verification spectral objects. With regard to chemometrics modeling, the performance of KPC-LS-SVM was somewhat more economical than that of the PC-LS-SVM model. It would appear that the latter relatively simple model would be sufficient for application to most small to medium sized FT-IR fingerprint data sets, but with larger matrices the more complex models, such as the RBF-ANN and KPC-LS-SVM, may be more advantageous on a computational basis.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3