Scattering Correction by Use of a Priori Information

Author:

Ottestad Silje1,Isaksson Tomas1,Saeys Wouter1,Wold Jens Petter1

Affiliation:

1. Nofima Mat, Osloveien 1, N-1430 Ås, Norway (S.O., J.P.W.); Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Ås, Norway (S.O., T.I.); and Katholieke Universiteit Leuven, Department of Biosystems, Division of Mechatronics Biostatistics and Sensors, Kasteelpark Arenberg 30, B-3001 Heverlee, Belgium (W.S.)

Abstract

In this paper we demonstrate how a limited amount of a priori knowledge about spectral variability can be used in extended multiplicative scattering correction (EMSC) to remove disturbing effects such as light scattering variation in visible and near-infrared spectra prior to data modeling. Two different datasets were studied. In the first dataset, pigment concentrations (astaxanthin) were estimated in a model system with different concentrations of the scattering agent intralipid. Different cases were created by including varying levels of intralipid in the calibration set and then applying the models on sample sets with scattering properties both within and outside the calibration range. Including the most accurate estimate of light scattering in the EMSC model gave root mean square errors of prediction (RMSEP) that were similar to a cross-validated global model including all samples, even for extreme extrapolation with regard to scattering properties. Less accurate estimates gave on average RMSEPs half of what could be achieved using EMSC without any a priori knowledge, suggesting that the method also has potential in cases where the accurate light scattering spectrum is difficult to obtain. In the second dataset carbohydrate concentrations (sucrose, fructose, and glucose) were estimated in orange-juice mixtures where unwanted spectral variation was caused by a change in distance between transmittance fiber-optic probes. This caused two different interfering phenomena due to path length variation and saturation in the detection system. The prediction results for a model based on spectra collected at one specific probe distance treated with EMSC with a correction spectrum were comparable to what could be achieved by a global model including spectra collected at three different distances. The corresponding RMSEPs for models using EMSC with no correction term were in the worst cases 4, 22, and 36 times higher for sucrose, fructose, and glucose, respectively.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3