Surface-Enhanced Raman Scattering Detection and Tracking of Nanoprobes: Enhanced Uptake and Nuclear Targeting in Single Cells

Author:

Gregas Molly K.1,Scaffidi Jonathan P.1,Lauly Benoit1,Vo-Dinh Tuan1

Affiliation:

1. Dept. of Biomedical Engineering (M.K.G., J.P.S., B.L., T.V.-D.), Dept. of Chemistry (T.V.-D.), Fitzpatrick Institute for Photonics (M.K.G., J.P.S., B.L., T.V.-D.), Duke University, Durham, North Carolina 27708

Abstract

We describe the development and application of a co-functionalized nanoprobe and biodelivery platform combining a nuclear targeting peptide (NTP) for improved cellular uptake and intracellular targeting with p-mercaptobenzoic acid (pMBA) as a surface-enhanced Raman scattering (SERS) reporter for tracking and imaging. The nuclear targeting peptide, an HIV-1 protein-derived TAT sequence, has been previously shown to aid entry of cargo through the cell membrane via normal cellular processes, and furthermore, to localize small cargo to the nucleus of the cell. Previous work in our lab has verified cell uptake and distribution of the nanoprobes in clinically relevant mouse and human cell lines. In this work, two-dimensional SERS mapping was used to track the spatial and temporal progress of nanoparticle uptake in PC-3 human prostate cells and to characterize localization at various time points, demonstrating the potential for an intracellularly targeted multiplexed nanobiosensing system with excellent sensitivity and specificity. Silver nanoparticles co-functionalized with the TAT peptide showed greatly enhanced cellular uptake over the control nanoparticles lacking the targeting moiety. The ability to detect and monitor nanoprobe trafficking using SERS spectroscopy offers an improved alternative over previous tracking and detection methods such as light microscopy and fluorescence methods. The development of multifunctional nanoconstructs for intracellular delivery has potential clinical applications in early detection and selective treatment of disease in affected cells. Other applications include use in basic research aimed at understanding the inner workings of living cells and how they respond to chemical and biological stimuli.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3