Affiliation:
1. Laboratorie DE Chimie Physique, Universite Paris-Sud, 91405 Orsay, France
2. Light Light Solutions, LLC, P.O. Box 81486, Athens, GA 30608 USA
Abstract
Polymer and life science applications of a technique that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy to obtain nanoscale IR spectra and images are reviewed. The AFM–IR spectra generated from this technique contain the same information with respect to molecular structure as conventional IR spectroscopy measurements, allowing significant leverage of existing expertise in IR spectroscopy. The AFM–IR technique can be used to acquire IR absorption spectra and absorption images with spatial resolution on the 50 to 100 nm scale, versus the scale of many micrometers or more for conventional IR spectroscopy. In the life sciences, experiments have demonstrated the capacity to perform chemical spectroscopy at the sub-cellular level. Specifically, the AFM–IR technique provides a label-free method for mapping IR-absorbing species in biological materials. On the polymer side, AFM–IR was used to map the IR absorption properties of polymer blends, multilayer films, thin films for active devices such as organic photovoltaics, microdomains in a semicrystalline polyhydroxyalkanoate copolymer, as well as model pharmaceutical blend systems. The ability to obtain spatially resolved IR spectra as well as high-resolution chemical images collected at specific IR wavenumbers was demonstrated. Complementary measurements mapping variations in sample stiffness were also obtained by tracking changes in the cantilever contact resonance frequency. Finally, it was shown that by taking advantage of the ability to arbitrarily control the polarization direction of the IR excitation laser, it is possible to obtain important information regarding molecular orientation in electrospun nanofibers.
Subject
Spectroscopy,Instrumentation
Cited by
440 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献