Alternatives to Cross-Validatory Estimation of the Number of Factors in Multivariate Calibration

Author:

Lorber Avraham1,Kowalski Bruce R.1

Affiliation:

1. Center for Process Analytical Chemistry and Laboratory for Chemometrics, Department of Chemistry BG-10, University of Washington, Seattle, Washington 98195

Abstract

Overcoming the collinearity problem in regression by data compression techniques [i.e., principal component regression (PCR) and partial least-squares (PLS)] requires estimation of the number of factors (principal component) to use for the model. The most common approach is to use cross-validation for this purpose. Unfortunately, cross-validation is time consuming to carry out. Accordingly, we have searched for time-saving methods to estimate the number of factors. Two approaches were considered. The first uses the estimated standard error of the model and the second is an approximation to a cross-validation leave-one-out method. Both alternatives have been tested on spectroscopic data. It has been found that, when the number of wavelengths is limited, both methods give results similar to those obtained by full cross-validation both for PCR and PLS. However, when the number of wavelengths is large, the tested methods are reliable only for PCR and not for PLS.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3