Time-Resolved Step-Scan FT-IR Investigations of the Transition from KL to L in the Bacteriorhodopsin Photocycle: Identification of Chromophore Twists by Assigning Hydrogen-Out-Of-Plane (HOOP) Bending Vibrations

Author:

Weidlich Olaf1,Siebert Friedrich1

Affiliation:

1. Institut für Biophysik und Strahlenbiologie, Albert-Ludwigs-Universität, Albertstraße 23, D-7800 Freiburg, Germany (O.W., F.S.); and Max-Planck-Institut für Biophysik, Kennedyallee 70, D-6000 Frankfurt a.M. 70, Germany (F.S.)

Abstract

Sub-microsecond time-resolved step-scan FT-IR spectroscopy is applied to the study of the molecular changes and their dynamics occurring during the KL-L transition of bacteriorhodopsin. The time-resolved difference spectra are compared to the static low-temperature BR → K and BR → L difference spectra. Our data show that the protein part in KL is similar to that in K. However, the chromophore is more relaxed and is differently twisted. A strong hydrogen-out-of-plane (HOOP) mode in KL is assigned to the 15-HOOP. As is the case for L, a strong deformation of the C14-C15single bond is deduced for KL. Evidence of a KL → L equilibrium is presented. In N, a 15-HOOP mode similar to that in L is observed, indicating very similar twists of the C14-C15single bond. This observation excludes major contributions of this deformation to the reduction of the pKaof the Schiff base in L. From the spectral changes, important molecular events are deduced that occur in the transitions to KL, L, and N.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3