Retinal vibrations in bacteriorhodopsin are mechanically harmonic but electronically anharmonic: evidence from overtone and combination bands

Author:

Lorenz-Fonfria Victor A.ORCID,Yagi KiyoshiORCID,Ito Shota,Kandori Hideki

Abstract

AbstractVibrations of the chromophore in the membrane protein bacteriorhodopsin (BR), a protonated Schiff base retinal, have been studied for decades, both by resonance Raman and by infrared (IR) difference spectroscopy. In spite the light-induced IR difference spectrum between the K intermediate (13-cis retinal) and the initial BR state (all-trans retinal) being first published almost 40 years ago, we present here unreported bands in the 2500 to 1800 cm−1 region. We show that the bands between 2500 and 2300 cm−1 originate from overtone and combination transitions of retinal C-C stretches. We assigned some of the newly reported bands below 2300 cm−1 to the combination of retinal C-C stretches with methyl rocks and with hydrogen-out-of-plane vibrations. Remarkably, experimental C-C overtone bands appeared at roughly twice the wavenumber of their fundamentals, with anharmonic mechanical constants ≤ 3.5 cm−1, and in some cases of ∼1 cm−1. Comparison of combination and fundamental bands indicates that most of the mechanical coupling constants are also very small. Despite the mechanical quasi-harmonicity of the C-C stretches, the area of their overtone bands was only ∼50 to ∼100 times smaller than of their fundamental bands. We concluded that electronic anharmonicity, the second mechanism giving intensity to overtone bands, must be particularly high for the retinal C-C stretches. We corroborated the assignments of negative bands in the K-BR difference spectrum by ab initio anharmonic spectral calculations of all-trans retinal in BR, which also reproduced reasonably well the small experimental anharmonic and coupling mechanical constants. Yet, and in spite accounting for both mechanical and electronic anharmonicities, the intensity of overtone C-C transitions was underestimated by a factor of 4 to 20, indicating room for improvement in state-of-the-art anharmonic vibrational calculations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3