Effect of Sampling Rate on Fourier Transform Spectra: Oversampling is Overrated

Author:

Alber George M.1,Marshall Alan G.1

Affiliation:

1. Department of Chemistry (G.M.A., A.G.M.) and Department of Biochemistry (A.G.M.), The Ohio State University, 120 West 18th Avenue, Columbus, Ohio 43210

Abstract

In Fourier transform spectrometry, an analog time-domain signal is sampled at equally spaced intervals and subjected to a discrete Fourier transform to yield a discrete frequency-domain spectrum. Round-off errors in the sampling process can generate quantization “noise” even for a noiseless time-domain analog signal. Oversampling refers to sampling a time-domain analog signal at a rate faster than that required by the Nyquist limit. Oversampling has been applied in a wide variety of fields, including image, speech, and audio spectral analysis. It has been variously claimed that oversampling can increase the effective number of analog-to-digital converter (ADC) bits, increase signal-to-noise ratio and/or resolution, allow for improved phase and/or magnitude linearity, and reduce quantization “noise” in the bandwidth of interest. In this paper, we explain and demonstrate the effects of oversampling in Fourier transform spectrometry. For Fourier transform interferometry, magnetic resonance, or ion cyclotron resonance mass spectrometry conducted with an ADC of at least 12 bit/word, we conclude that quantization “noise” is negligible; oversampling thus has little effect on FT spectral signal-to-noise ratio, dynamic range, or resolution. Oversampling can, however, improve phase and magnitude linearity by eliminating the need for a sharp cutoff in the passband of the analog filter. Finally, autocorrelation analysis of simulated time-domain signals shows that quantization “noise” is random and essentially independent of frequency (i.e., “white”) at practically attainable sampling rates.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference20 articles.

1. Beating the Multiplex Disadvantage in Shot-Noise-Limited Interferometry with Self-Adaptive Filtering

2. Oppenheim A. V. and Schafer R. W, Discrete-Time Signal Processing (Prentice-Hall, New Jersey, 1989), pp. 86–87, 119–123, 748–755.

3. Beating the Nyquist Limit by Means of Interleaved Alternated Delay Sampling: Extension of Lower Mass Limit in Direct-Mode Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

4. Horlick G., Hall R. H. and Yuen W. K, in Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems, Ferraro J. R. and Basile L. J, Eds. (Academic Press, New York, 1982), Vol. 3, Chap. 2, pp. 37–81.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3