Beating the Nyquist Limit by Means of Interleaved Alternated Delay Sampling: Extension of Lower Mass Limit in Direct-Mode Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

Author:

Verdun Francis R.1,Ricca Tom L.1,Marshall Alan G.1

Affiliation:

1. Department of Chemistry (F.R.V., A.G.M.), Campus Chemical Instrument Center (T.L.R.), and Department of Biochemistry (A.G.M.), The Ohio State University, 120 West 18th Avenue, Columbus, Ohio 43210

Abstract

According to the Nyquist theorem, the highest signal frequency which can be represented without foldover (aliasing) in a Fourier transform frequency-domain discrete spectrum is one-half of the time-domain sampling frequency. For example, since ion cyclotron resonance (ICR) frequency is inversely related to ionic mass-to-charge ratio, m/z, the highest ICR frequency (corresponding to the lowest correctly represented m/z) in direct-mode Fourier transform ICR mass spectrometry is restricted to one-half of the maximum sampling frequency, or about m/z ≥ 18 at 3.058 tesla (T) for a maximum sampling frequency of about 5.2 MHz. In this paper, we show that interleaved addition of two digitized time-domain transient signals, one of which is delayed by one-half of one sampling period (i.e., half of one cycle of the time-domain sampling frequency) with respect to the other, generates a time-domain discrete waveform which is indistinguishable from a single waveform produced by sampling at twice the original sampling rate. Thus, provided that the two transients have (or have been normalized to) the same magnitude, one can double the Nyquist-limited frequency range. If the sampling period is divided into three or more equal parts, with interleaved addition of three or more correspondingly delayed transients, the same method can further increase the upper frequency limit. The method is applied to the experimental doubling or quadrupling of FT/ICR direct-mode frequency range, as for example in the extension of the lower mass limit to below m/z = 12 at 3.058 T with a sampling rate of only 4.0 MHz.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference10 articles.

1. Bracewell R., The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), pp. 189–194.

2. Marshall A. G., in Fourier, Hadamard, and Hilbert Transforms in Chemistry, Marshall A. G., Ed. (Plenum, New York, 1978), pp. 1–43.

3. Horlick G., Hall R. H., Yuen W. K., in Fourier Transform Infrared Spectroscopy, Ferraro J. R., Basile L. J., Eds. (American Chemical Soc., Washington, D.C., 1982), Vol. 3, pp. 37–81.

4. Making use of information contained in folded-back peaks to identify low mass ions in Fourier transform mass spectrometry

5. Automatic peak-unfolding routine for low mass detection in Fourier transform mass spectrometry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3