Determination and Use of Secondary Infrared Intensity Standards

Author:

Bertie John E.1,Zhang Shuliang L.1,Jones R. Norman1,Apelblat Yoram1,Keefe C. Dale1

Affiliation:

1. Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada

Abstract

The presentation of absorption intensities in infrared spectra is usually limited to relative intensities instead of absolute intensities. The measurement of absolute intensities can be facilitated by the use of secondary intensity standards. Such standards have been accepted by the Commission on Molecular Structure and Spectroscopy and the Physical Chemistry Division of the International Union of Pure and Applied Chemistry and were published recently. The secondary standards are based on the complex refractive index and molar absorption coefficient spectra of benzene, chlorobenzene, toluene, and dichloromethane. They have been used in this laboratory to calibrate the effective pathlength of a transmission cell and the effective number of reflections in a Circle® multiple attenuated total reflection cell. A computer program, IRYTRUE, has been developed to standardize the routine use of these intensity standards to calibrate the effective pathlength of a transmission cell. The program has been used to calibrate three transmission cells. The agreement between the calibrated values of the effective pathlength obtained from the use of different standard band groups was determined. The calibrated cell pathlength agrees with that calculated from the interference fringe pattern of the empty cell within 3% for very thin cells and within 1% for cells thicker than 100 μm. We propose that the effective pathlength evaluated in this manner be called the cell constant, and that this cell constant be used in place of the pathlength in quantitative infrared analysis. The calibration of multiple attenuated total reflection measurements in the Circle cell has been achieved in two ways: by the use of peak heights and by the use of areas. Programs PCCALC and CIRCLCAL and its associated program RSCALC are described for this purpose. The intensity standards allow one to measure absolute infrared absorption intensities of liquids with confidence to an estimated accuracy of 2–3% by either transmission or calibrated ATR methods.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3