Luminescence Lifetime Quenching of a Ruthenium(II) Polypyridyl Dye for Optical Sensing of Carbon Dioxide

Author:

Marazuela María D.1,Moreno-Bondi María C.1,Orellana Guillermo1

Affiliation:

1. Department of Analytical Chemistry (M.D.M., M.C.M.-B.) and Laboratory of Applied Photochemistry, Department of Organic Chemistry (G.O.), Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain

Abstract

Carbon dioxide in gaseous samples can be measured in the 3.5 × 10-4 to 0.1 MPa partial pressure range with the use of a fiber-optic luminescent sensor operated in the time-correlated single photon counting (TC-SPC) detection mode. The sensitive tip is fabricated with tris[2-(2-pyrazinyl)thiazole]ruthenium(II) electrostatically immobilized onto carboxymethyl-Sephadex gel. The photoexcited dye is dynamically quenched by hydrogenphthalate generated upon permeation through silicone and dissolution of CO2 into the indicator gel phase containing phthalate buffer of pH 7.3. The nonlinear response of the optical indicator is shown to obey the calculated complex relationship between its emission lifetime and the PCO2. Luminescence decays (293 > τ > 173 ns) of the polymer-supported indicator are strictly exponential in the 0–100% CO2 range. Relative standard deviation values ( n = 7) of 1.9, 1.2, and 1.7% have been measured for 0.0044, 0.023, and 0.092 MPa CO2 in argon, respectively; almost twice as much were obtained when the sensor was operated in the emission intensity mode. The temperature effect (6.1 ns K-1) on the sensitive membrane and (linear) cross-sensitivity to oxygen are discussed as well. The working principle put forward allows one to monitor CO2 using the same optoelectronic instrumentation already well developed for phase-sensitive luminescence optosensing of O2 with pH-independent Ru(II) indicators.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3