Active and Passive Electro-Optical Sensors for Health Assessment in Food Crops

Author:

Fahey Thomas,Pham Hai,Gardi AlessandroORCID,Sabatini RobertoORCID,Stefanelli Dario,Goodwin Ian,Lamb David William

Abstract

In agriculture, early detection of plant stresses is advantageous in preventing crop yield losses. Remote sensors are increasingly being utilized for crop health monitoring, offering non-destructive, spatialized detection and the quantification of plant diseases at various levels of measurement. Advances in sensor technologies have promoted the development of novel techniques for precision agriculture. As in situ techniques are surpassed by multispectral imaging, refinement of hyperspectral imaging and the promising emergence of light detection and ranging (LIDAR), remote sensing will define the future of biotic and abiotic plant stress detection, crop yield estimation and product quality. The added value of LIDAR-based systems stems from their greater flexibility in capturing data, high rate of data delivery and suitability for a high level of automation while overcoming the shortcomings of passive systems limited by atmospheric conditions, changes in light, viewing angle and canopy structure. In particular, a multi-sensor systems approach and associated data fusion techniques (i.e., blending LIDAR with existing electro-optical sensors) offer increased accuracy in plant disease detection by focusing on traditional optimal estimation and the adoption of artificial intelligence techniques for spatially and temporally distributed big data. When applied across different platforms (handheld, ground-based, airborne, ground/aerial robotic vehicles or satellites), these electro-optical sensors offer new avenues to predict and react to plant stress and disease. This review examines the key sensor characteristics, platform integration options and data analysis techniques recently proposed in the field of precision agriculture and highlights the key challenges and benefits of each concept towards informing future research in this very important and rapidly growing field.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3