Analytical Characterization of Reflected and Transmitted Light from Cellular Structural Material for the Parallel Beam of NIR Incident Light

Author:

Tsuchikawa Satoru1,Tsutsumi Shigeaki1

Affiliation:

1. School of Agricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan (S. Tsuchikawa); and School of Engineering, Fukui University of Technology, Fukui, 910-8505, Japan (S. Tsutsumi)

Abstract

The results of several studies show clearly that the behavior of light transmitted in wood samples is considerably different from that of an ideal scattering medium. These observations suggest that the Kubelka–Munk theory (the K-M theory) cannot be applied directly to biological material with a cellular structure. We have developed new concepts to understand the optical characteristics of a sample having cellular structure for the illumination condition of the available spectrometers. Through a series of examinations, it became clear that the behavior of diffusely reflected light in wood was accurately described by the K-M theory. However, the behavior of its transmitted light was considerably different from that of an ideal scattering medium under the conditions of Lambert's cosine law. A two-component model of the diffusion process with respect to a parallel beam component of incident light was considered. Furthermore, the nth power cosine model of radiant intensity was introduced to be fitted for the actual state of the radiation in wood. On the basis of these optical models, the mean optical pathlength through the sample was calculated, which allowed the concept of the equivalent sample thickness to be derived. Over and above these considerations, generalized input/output equations for radiation were constructed by introducing the equivalent sample thickness into K-M equations. The absorbance calculated by such concepts agreed well with the experimental values.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3