Quality and Statistical Classification of Brazilian Vegetable Oils Using Mid-Infrared and Raman Spectroscopy

Author:

Samyn Pieter1,Van Nieuwkerke Dieter1,Schoukens Gustaaf1,Vonck Leo1,Stanssens Dirk1,Van Den Abbeele Henk1

Affiliation:

1. Albert-Lüdwigs-University Freiburg, Institute for Forest Utilization, Werthmannstrasse 6, D-79085 Freiburg, Germany (P.S.); Ghent University – Department of Textiles, Technologiepark 907, B-9052 Zwijnaarde, Belgium (D.V.N., G.S.); and Topchim N.V., Nijverheidstraat 98, B-2160 Wommelgem, Belgium (L.V., D.S., H.V.A.)

Abstract

Palm oil, soy oil, sunflower oil, corn oil, castor oil, and rapeseed oil were analyzed with Fourier transform infrared (FT-IR) and FT-Raman spectroscopy. The quality of different oils was evaluated and statistically classified by principal component analysis (PCA) and a partial least squares (PLS) regression model. First, a calibration set of spectra was selected from one sampling batch. The qualitative variations in spectra are discussed with a prediction of oil composition (saturated, mono- and polyunsaturated fatty acids) from mid-infrared analysis and iodine value from FT-Raman analysis, based on ratioing the intensity of bands at given wavenumbers. A more robust and convincing oil classification is obtained from two-parameter statistical models. The statistical analysis of FT-Raman spectra favorably distinguishes according to the iodine value, while the mid-infrared spectra are most sensitive to hydroxyl moieties. Second, the models are validated with a set of spectra from another sampling batch, including the same oil types as-received and after different aging times together with a hydrogenated castor oil and high-oleic sunflower oil. There is very good agreement between the model predictions and the Raman measurements, but the statistical significance is lower for mid-infrared spectra. In the future, this calibration model will be used to check vegetable oil qualities before using them in polymerization processes.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3