Entrainment and Transport of Laser Ablated Plumes for Subsequent Elemental Analysis

Author:

Arrowsmith Peter1,Hughes Steven K.1

Affiliation:

1. IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (P.A.); and IBM General Products Division, 5600 Cottle Road, San Jose, California 95193 (S.K.H.)

Abstract

Several cell designs have been systematically evaluated for gas flow entrainment and transport of laser ablated material to a secondary excitation source for elemental analysis. The best cell is not limited to samples of particular size or shape and is insensitive to sample surface irregularity. An annular gas sheath around the cell results in a transient response sufficiently fast to permit depth and lateral sampling of single samples or rapid throughput of different samples but slow enough to give a steady signal with laser repetition rates ≥10 Hz. Entrainment and transport of ablated particulates have been investigated experimentally and by model calculation for a test material (Mo metal). The equations for predicting diffusive and gravitational loss of particles in a horizontal tube are presented and discussed. The major loss mechanism appears to be gravitational deposition of relatively large particles formed during ablation and possibly by coalescence within the transfer tube. Entrainment of ablated Mo by the cell and mass transport from the cell to the secondary source were determined to be ∼90% and ∼40% efficient, respectively. Shot-to-shot fluctuation in particle size may cause corresponding variation in transport efficiency when the upper end of the ablated particle size distribution exceeds the size limit for particle transport.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3