Improving Tornado Warning Communication for Deaf and Hard of Hearing Audiences

Author:

Senkbeil Jason C.1,Griffin Darrin J.2,Sherman-Morris Kathleen3,Saari Jennifer4,Brothers Kimberly1

Affiliation:

1. University of Alabama - Dept. of Geography

2. University of Alabama - Dept. of Communications Studies

3. Mississippi State University - Dept. of Geosciences

4. National Weather Service - Huntsville, AL

Abstract

Although specialized personal and residential Deaf warning technologies exist, receipt and comprehension of tornado warning information from local television is often delayed or misunderstood because of closed-captioning deficiencies. In order to suggest improvements for the communication of tornado warnings to Deaf and Hard of Hearing (D/HoH) audiences, interviews and a focus group were conducted within the active tornado counties of Alabama. D/HoH individuals generally use more information sources than the hearing population to better understand their risk. Protective action decision-making by our sample was characterized by more hesitation, uncertainty, and indecision than in the hearing population. The most common suggestion for improving tornado-warning communication was to have an American Sign Language (ASL) interpreter shown on screen with a local television meteorologist during a tornado warning. A split-screen television product with an ASL interpreter in a remote studio was prototyped showing that this type of live broadcast is possible for local tornado-warning coverage. Several screen formats were evaluated by a focus group with the conclusion that the ASL interpreter should be on the left side of the screen without obscuring any part of the weather broadcast. The split-screen product with an ASL interpreter resulted in full access to all broadcast information, the ability to make immediate safety decisions, and was welcomed with excitement by the focus-group participants. This modification, along with the education and preparedness efforts of the National Weather Service, help remedy the information gaps and comprehension delays of this underserved population.

Publisher

National Weather Association

Subject

Management Science and Operations Research,Atmospheric Science,Computers in Earth Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3